3.479 \(\int \frac{\coth (c+d x) \text{csch}^2(c+d x)}{a+b \sinh (c+d x)} \, dx\)

Optimal. Leaf size=72 \[ \frac{b^2 \log (\sinh (c+d x))}{a^3 d}-\frac{b^2 \log (a+b \sinh (c+d x))}{a^3 d}+\frac{b \text{csch}(c+d x)}{a^2 d}-\frac{\text{csch}^2(c+d x)}{2 a d} \]

[Out]

(b*Csch[c + d*x])/(a^2*d) - Csch[c + d*x]^2/(2*a*d) + (b^2*Log[Sinh[c + d*x]])/(a^3*d) - (b^2*Log[a + b*Sinh[c
 + d*x]])/(a^3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.110946, antiderivative size = 72, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {2833, 12, 44} \[ \frac{b^2 \log (\sinh (c+d x))}{a^3 d}-\frac{b^2 \log (a+b \sinh (c+d x))}{a^3 d}+\frac{b \text{csch}(c+d x)}{a^2 d}-\frac{\text{csch}^2(c+d x)}{2 a d} \]

Antiderivative was successfully verified.

[In]

Int[(Coth[c + d*x]*Csch[c + d*x]^2)/(a + b*Sinh[c + d*x]),x]

[Out]

(b*Csch[c + d*x])/(a^2*d) - Csch[c + d*x]^2/(2*a*d) + (b^2*Log[Sinh[c + d*x]])/(a^3*d) - (b^2*Log[a + b*Sinh[c
 + d*x]])/(a^3*d)

Rule 2833

Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)
])^(n_.), x_Symbol] :> Dist[1/(b*f), Subst[Int[(a + x)^m*(c + (d*x)/b)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[
{a, b, c, d, e, f, m, n}, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{\coth (c+d x) \text{csch}^2(c+d x)}{a+b \sinh (c+d x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{b^3}{x^3 (a+x)} \, dx,x,b \sinh (c+d x)\right )}{b d}\\ &=\frac{b^2 \operatorname{Subst}\left (\int \frac{1}{x^3 (a+x)} \, dx,x,b \sinh (c+d x)\right )}{d}\\ &=\frac{b^2 \operatorname{Subst}\left (\int \left (\frac{1}{a x^3}-\frac{1}{a^2 x^2}+\frac{1}{a^3 x}-\frac{1}{a^3 (a+x)}\right ) \, dx,x,b \sinh (c+d x)\right )}{d}\\ &=\frac{b \text{csch}(c+d x)}{a^2 d}-\frac{\text{csch}^2(c+d x)}{2 a d}+\frac{b^2 \log (\sinh (c+d x))}{a^3 d}-\frac{b^2 \log (a+b \sinh (c+d x))}{a^3 d}\\ \end{align*}

Mathematica [A]  time = 0.100926, size = 60, normalized size = 0.83 \[ \frac{-a^2 \text{csch}^2(c+d x)+2 b^2 (\log (\sinh (c+d x))-\log (a+b \sinh (c+d x)))+2 a b \text{csch}(c+d x)}{2 a^3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Coth[c + d*x]*Csch[c + d*x]^2)/(a + b*Sinh[c + d*x]),x]

[Out]

(2*a*b*Csch[c + d*x] - a^2*Csch[c + d*x]^2 + 2*b^2*(Log[Sinh[c + d*x]] - Log[a + b*Sinh[c + d*x]]))/(2*a^3*d)

________________________________________________________________________________________

Maple [A]  time = 0.001, size = 73, normalized size = 1. \begin{align*} -{\frac{1}{2\,da \left ( \sinh \left ( dx+c \right ) \right ) ^{2}}}+{\frac{{b}^{2}\ln \left ( \sinh \left ( dx+c \right ) \right ) }{{a}^{3}d}}+{\frac{b}{d{a}^{2}\sinh \left ( dx+c \right ) }}-{\frac{{b}^{2}\ln \left ( a+b\sinh \left ( dx+c \right ) \right ) }{{a}^{3}d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(coth(d*x+c)*csch(d*x+c)^2/(a+b*sinh(d*x+c)),x)

[Out]

-1/2/d/a/sinh(d*x+c)^2+b^2*ln(sinh(d*x+c))/a^3/d+1/d/a^2*b/sinh(d*x+c)-b^2*ln(a+b*sinh(d*x+c))/a^3/d

________________________________________________________________________________________

Maxima [B]  time = 1.26917, size = 217, normalized size = 3.01 \begin{align*} -\frac{2 \,{\left (b e^{\left (-d x - c\right )} - a e^{\left (-2 \, d x - 2 \, c\right )} - b e^{\left (-3 \, d x - 3 \, c\right )}\right )}}{{\left (2 \, a^{2} e^{\left (-2 \, d x - 2 \, c\right )} - a^{2} e^{\left (-4 \, d x - 4 \, c\right )} - a^{2}\right )} d} - \frac{b^{2} \log \left (-2 \, a e^{\left (-d x - c\right )} + b e^{\left (-2 \, d x - 2 \, c\right )} - b\right )}{a^{3} d} + \frac{b^{2} \log \left (e^{\left (-d x - c\right )} + 1\right )}{a^{3} d} + \frac{b^{2} \log \left (e^{\left (-d x - c\right )} - 1\right )}{a^{3} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)*csch(d*x+c)^2/(a+b*sinh(d*x+c)),x, algorithm="maxima")

[Out]

-2*(b*e^(-d*x - c) - a*e^(-2*d*x - 2*c) - b*e^(-3*d*x - 3*c))/((2*a^2*e^(-2*d*x - 2*c) - a^2*e^(-4*d*x - 4*c)
- a^2)*d) - b^2*log(-2*a*e^(-d*x - c) + b*e^(-2*d*x - 2*c) - b)/(a^3*d) + b^2*log(e^(-d*x - c) + 1)/(a^3*d) +
b^2*log(e^(-d*x - c) - 1)/(a^3*d)

________________________________________________________________________________________

Fricas [B]  time = 2.19279, size = 1370, normalized size = 19.03 \begin{align*} \frac{2 \, a b \cosh \left (d x + c\right )^{3} + 2 \, a b \sinh \left (d x + c\right )^{3} - 2 \, a^{2} \cosh \left (d x + c\right )^{2} - 2 \, a b \cosh \left (d x + c\right ) + 2 \,{\left (3 \, a b \cosh \left (d x + c\right ) - a^{2}\right )} \sinh \left (d x + c\right )^{2} -{\left (b^{2} \cosh \left (d x + c\right )^{4} + 4 \, b^{2} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + b^{2} \sinh \left (d x + c\right )^{4} - 2 \, b^{2} \cosh \left (d x + c\right )^{2} + 2 \,{\left (3 \, b^{2} \cosh \left (d x + c\right )^{2} - b^{2}\right )} \sinh \left (d x + c\right )^{2} + b^{2} + 4 \,{\left (b^{2} \cosh \left (d x + c\right )^{3} - b^{2} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right )\right )} \log \left (\frac{2 \,{\left (b \sinh \left (d x + c\right ) + a\right )}}{\cosh \left (d x + c\right ) - \sinh \left (d x + c\right )}\right ) +{\left (b^{2} \cosh \left (d x + c\right )^{4} + 4 \, b^{2} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + b^{2} \sinh \left (d x + c\right )^{4} - 2 \, b^{2} \cosh \left (d x + c\right )^{2} + 2 \,{\left (3 \, b^{2} \cosh \left (d x + c\right )^{2} - b^{2}\right )} \sinh \left (d x + c\right )^{2} + b^{2} + 4 \,{\left (b^{2} \cosh \left (d x + c\right )^{3} - b^{2} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right )\right )} \log \left (\frac{2 \, \sinh \left (d x + c\right )}{\cosh \left (d x + c\right ) - \sinh \left (d x + c\right )}\right ) + 2 \,{\left (3 \, a b \cosh \left (d x + c\right )^{2} - 2 \, a^{2} \cosh \left (d x + c\right ) - a b\right )} \sinh \left (d x + c\right )}{a^{3} d \cosh \left (d x + c\right )^{4} + 4 \, a^{3} d \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + a^{3} d \sinh \left (d x + c\right )^{4} - 2 \, a^{3} d \cosh \left (d x + c\right )^{2} + a^{3} d + 2 \,{\left (3 \, a^{3} d \cosh \left (d x + c\right )^{2} - a^{3} d\right )} \sinh \left (d x + c\right )^{2} + 4 \,{\left (a^{3} d \cosh \left (d x + c\right )^{3} - a^{3} d \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)*csch(d*x+c)^2/(a+b*sinh(d*x+c)),x, algorithm="fricas")

[Out]

(2*a*b*cosh(d*x + c)^3 + 2*a*b*sinh(d*x + c)^3 - 2*a^2*cosh(d*x + c)^2 - 2*a*b*cosh(d*x + c) + 2*(3*a*b*cosh(d
*x + c) - a^2)*sinh(d*x + c)^2 - (b^2*cosh(d*x + c)^4 + 4*b^2*cosh(d*x + c)*sinh(d*x + c)^3 + b^2*sinh(d*x + c
)^4 - 2*b^2*cosh(d*x + c)^2 + 2*(3*b^2*cosh(d*x + c)^2 - b^2)*sinh(d*x + c)^2 + b^2 + 4*(b^2*cosh(d*x + c)^3 -
 b^2*cosh(d*x + c))*sinh(d*x + c))*log(2*(b*sinh(d*x + c) + a)/(cosh(d*x + c) - sinh(d*x + c))) + (b^2*cosh(d*
x + c)^4 + 4*b^2*cosh(d*x + c)*sinh(d*x + c)^3 + b^2*sinh(d*x + c)^4 - 2*b^2*cosh(d*x + c)^2 + 2*(3*b^2*cosh(d
*x + c)^2 - b^2)*sinh(d*x + c)^2 + b^2 + 4*(b^2*cosh(d*x + c)^3 - b^2*cosh(d*x + c))*sinh(d*x + c))*log(2*sinh
(d*x + c)/(cosh(d*x + c) - sinh(d*x + c))) + 2*(3*a*b*cosh(d*x + c)^2 - 2*a^2*cosh(d*x + c) - a*b)*sinh(d*x +
c))/(a^3*d*cosh(d*x + c)^4 + 4*a^3*d*cosh(d*x + c)*sinh(d*x + c)^3 + a^3*d*sinh(d*x + c)^4 - 2*a^3*d*cosh(d*x
+ c)^2 + a^3*d + 2*(3*a^3*d*cosh(d*x + c)^2 - a^3*d)*sinh(d*x + c)^2 + 4*(a^3*d*cosh(d*x + c)^3 - a^3*d*cosh(d
*x + c))*sinh(d*x + c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\coth{\left (c + d x \right )} \operatorname{csch}^{2}{\left (c + d x \right )}}{a + b \sinh{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)*csch(d*x+c)**2/(a+b*sinh(d*x+c)),x)

[Out]

Integral(coth(c + d*x)*csch(c + d*x)**2/(a + b*sinh(c + d*x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.43603, size = 181, normalized size = 2.51 \begin{align*} \frac{\frac{b^{2} \log \left (e^{\left (d x + c\right )} + 1\right )}{a^{3}} - \frac{b^{2} \log \left ({\left | b e^{\left (2 \, d x + 2 \, c\right )} + 2 \, a e^{\left (d x + c\right )} - b \right |}\right )}{a^{3}} + \frac{b^{2} \log \left ({\left | e^{\left (d x + c\right )} - 1 \right |}\right )}{a^{3}} + \frac{2 \,{\left (a b e^{\left (3 \, d x + 3 \, c\right )} - a^{2} e^{\left (2 \, d x + 2 \, c\right )} - a b e^{\left (d x + c\right )}\right )}}{a^{3}{\left (e^{\left (d x + c\right )} + 1\right )}^{2}{\left (e^{\left (d x + c\right )} - 1\right )}^{2}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)*csch(d*x+c)^2/(a+b*sinh(d*x+c)),x, algorithm="giac")

[Out]

(b^2*log(e^(d*x + c) + 1)/a^3 - b^2*log(abs(b*e^(2*d*x + 2*c) + 2*a*e^(d*x + c) - b))/a^3 + b^2*log(abs(e^(d*x
 + c) - 1))/a^3 + 2*(a*b*e^(3*d*x + 3*c) - a^2*e^(2*d*x + 2*c) - a*b*e^(d*x + c))/(a^3*(e^(d*x + c) + 1)^2*(e^
(d*x + c) - 1)^2))/d